
$

Competitive Security Assessment

HashKey

Nov 12th, 2024

Secure3 secure3.io

HashKey

1

Summary 3

Overview 4

Audit Scope 5

Code Assessment Findings 6

HKY-1 Unused Imports 7

HKY-2 Unnecessary Checked in Loop 8

HKY-3 State Variable Could be Cached in Memory 11

HKY-4 Compiler Version Optimization 13

HKY-5 Cheaper Conditional Operators 15

HKY-6 Avoid Re-storing Same Values 17

Disclaimer 18

HashKey

2

Summary

This report is prepared for the project to identify vulnerabilities and issues in the smart contract

source code. A group of NDA covered experienced security experts have participated in the

Secure3’s Audit Contest to find vulnerabilities and optimizations. Secure3 team has participated in

the contest process as well to provide extra auditing coverage and scrutiny of the finding

submissions.

The comprehensive examination and auditing scope includes:

• Cross checking contract implementation against functionalities described in the documents and

white paper disclosed by the project owner.

• Contract Privilege Role Review to provide more clarity on smart contract roles and privilege.

• Using static analysis tools to analyze smart contracts against common known vulnerabilities

patterns.

• Verify the code base is compliant with the most up-to-date industry standards and security best

practices.

• Comprehensive line-by-line manual code review of the entire codebase by industry experts.

The security assessment resulted in findings that are categorized in four severity levels: Critical,

Medium, Low, Informational. For each of the findings, the report has included recommendations

of fix or mitigation for security and best practices.

HashKey

3

Overview

Project Name HashKey

Language solidity

Codebase https://etherscan.io/token/0x557683a5fa469d00516dee63fbf

345c450cf647a#code

https://etherscan.io/address/0xE7C6BF469e97eEB0bFB74C8d

bFF5BD47D4C1C98a#code

https://etherscan.io/token/0x557683a5fa469d00516dee63fbf345c450cf647a#code
https://etherscan.io/token/0x557683a5fa469d00516dee63fbf345c450cf647a#code
https://etherscan.io/address/0xE7C6BF469e97eEB0bFB74C8dbFF5BD47D4C1C98a#code
https://etherscan.io/address/0xE7C6BF469e97eEB0bFB74C8dbFF5BD47D4C1C98a#code

HashKey

4

Audit Scope

File SHA256 Hash

HSKImplementationV1/contracts/ERC20.sol c329fbf2c4a7ee50137f0c0a6e66eea6d66d60c638a4d
cde9bd97e96a7efff09

HSKProxy/contracts/Proxy.sol 520654d490e6a4900676bd1f927c63f7e4cc150252db
77dedd0a92cf234b792c

HSKImplementationV1/contracts/BurnPermit.sol ea9e150198c385d60c8b10ef8cfda9867037474f6dc1a
704c9a86cc935adc199

HSKImplementationV1/contracts/library/Vesting.sol 1610326cef7f95da2bbde82d8f675b7157439632ef7c
9d3d9e4cf15bddf888b5

HSKImplementationV1/contracts/ERC20Permit.sol be0d5c24ecccee42672e56d99b96d426c75ab54db7e
5f93d3cb49e2e344c6ec0

HSKImplementationV1/contracts/library/CheckSig.s
ol

f0eec8ea55b30faeef6b704b1db037abdfd0e514ad98
ead10b870b00e32bb5f1

HSKImplementationV1/contracts/Access.sol 4020d6bd12b85cfa8cb7257fe2c71def243f3e668bcad
1bf2b2809f7d72c4e72

HSKImplementationV1/contracts/BlackList.sol 1e0e1da075ffb10f993aceb53c9e2e0e54a9b26f348f4
88d3e51c8ec761c42d5

HSKImplementationV1/contracts/HSK.sol 744568f6ef8f9d3fa8cd0f1fd5bb2a68952da4ee693a2
dd560eeb94799c5298d

HSKImplementationV1/contracts/library/Mint.sol a134cd3094a7e77a3535c5e4f395dfd4db5040566f89
42bcc40f06ff973c8f5c

HashKey

5

Code Assessment Findings

ID Name Category Severity Client Response Contributor

HKY-1 Unused Imports Gas Optimiza
tion

Informational Acknowledged ***

HKY-2 Unnecessary Checked in Lo

op

Gas Optimiza
tion

Informational Acknowledged ***

HKY-3 State Variable Could be Cac

hed in Memory

Gas Optimiza
tion

Informational Acknowledged ***

HKY-4 Compiler Version Optimizati

on

Logical Informational Acknowledged ***

HKY-5 Cheaper Conditional Operat

ors

Language Sp
ecific

Informational Acknowledged ***

HKY-6 Avoid Re-storing Same Valu

es

Code Style Informational Acknowledged ***

HashKey

6

HKY-1:Unused Imports

Category Severity Client Response Contributor

Gas Optimization Informational Acknowledged ***

Code Reference
code/HSKImplementationV1/contracts/BurnPermit.sol#L5

5: import "@openzeppelin/contracts/access/Ownable.sol";

Description
***: In the contract BurnPermit.sol , where was found to be importing the file @openzeppelin/contracts/access/Own
able.sol which is not used anywhere in the code:

import "@openzeppelin/contracts/access/Ownable.sol";

And Solidity is a Gas-constrained language. Having unused code or import statements incurs extra gas usage
when deploying the contract.

Recommendation
***: Remove the unused import statement @openzeppelin/contracts/access/Ownable.sol if it's not utilized
anywhere in the code to save on deployment gas.

- import "@openzeppelin/contracts/access/Ownable.sol";

Client Response
client response : Acknowledged.

HashKey

7

HKY-2:Unnecessary Checked in Loop

Category Severity Client Response Contributor

Gas Optimization Informational Acknowledged ***

Code Reference
code/HSKImplementationV1/contracts/ERC20.sol#L212-L218

code/HSKImplementationV1/contracts/ERC20.sol#L221-L231

212: function batchTransfer(address[] memory tos, uint256[] memory amounts) external {
213: require(tos.length == amounts.length, "ERC20: Unmatched array length");
214:
215: for (uint256 i = 0; i < tos.length; i++) {
216: transfer(tos[i], amounts[i]);
217: }
218: }

221: function batchTransferFrom(
222: address from,
223: address[] memory tos,
224: uint256[] memory amounts
225:) external {
226: require(tos.length == amounts.length, "ERC20: Unmatched array length");
227:
228: for (uint256 i = 0; i < tos.length; i++) {
229: transferFrom(from, tos[i], amounts[i]);
230: }
231: }

Description
***: Increments inside a loop could never overflow due to the fact that the transaction will run out of gas before
the variable reaches its limits. Therefore, it makes no sense to have checked arithmetic in such a place:

HashKey

8

 function batchTransfer(address[] memory tos, uint256[] memory amounts) external {

 require(tos.length == amounts.length, "ERC20: Unmatched array length");

>@ for (uint256 i = 0; i < tos.length; i++) {

 transfer(tos[i], amounts[i]);

 }

 }

 /// @dev batch execute transferFrom tokens.

 function batchTransferFrom(

 address from,

 address[] memory tos,

 uint256[] memory amounts

) external {

 require(tos.length == amounts.length, "ERC20: Unmatched array length");

>@ for (uint256 i = 0; i < tos.length; i++) {

 transferFrom(from, tos[i], amounts[i]);

 }

 }

Recommendation
***: It is recommended to have the increment value inside the unchecked block to save some gas.

HashKey

9

function batchTransfer(address[] memory tos, uint256[] memory amounts) external {

 require(tos.length == amounts.length, "ERC20: Unmatched array length");

 for (uint256 i = 0; i < tos.length;) {

 transfer(tos[i], amounts[i]);

 unchecked {i++};

 }

 }

 /// @dev batch execute transferFrom tokens.

 function batchTransferFrom(

 address from,

 address[] memory tos,

 uint256[] memory amounts

) external {

 require(tos.length == amounts.length, "ERC20: Unmatched array length");

 for (uint256 i = 0; i < tos.length;) {

 transferFrom(from, tos[i], amounts[i]);

 unchecked {i++};

 }

 }

Client Response
client response : Acknowledged.

HashKey

10

HKY-3:State Variable Could be Cached in Memory

Category Severity Client Response Contributor

Gas Optimization Informational Acknowledged ***

Code Reference
code/HSKImplementationV1/contracts/ERC20.sol#L540-L553

540: function _decreaseShare(Mint.Bucket bucket, uint256 amount) internal {
541: if (bucket == Mint.Bucket.EcoGrowth) {
542: require(amount <= _ecoGrowthShare, "ERC20: Insufficient share");
543: _ecoGrowthShare -= amount;
544: } else if (bucket == Mint.Bucket.Team) {
545: require(amount <= _teamShare, "ERC20: Insufficient share");
546: _teamShare -= amount;
547: } else if (bucket == Mint.Bucket.Reserve) {
548: require(amount <= _reserveShare, "ERC20: Insufficient share");
549: _reserveShare -= amount;
550: } else {
551: revert("ERC20: Invalid mint bucket");
552: }
553: }

Description
***: The contract ERC20.sol is using the state variables _ecoGrowthShare , _teamShare and _reserveShare multiple
times in the function _decreaseShare .
SLOAD are expensive (2100 gas to 1st access and 100 gas for each subsequent access.) compared to MLOAD/MSTOR
E (3 gas each).

Recommendation
***: Cache storage variables in memory to minimize SLOAD operations and reduce gas costs.

HashKey

11

function _decreaseShare(Mint.Bucket bucket, uint256 amount) internal {

 if (bucket == Mint.Bucket.EcoGrowth) {

 uint256 ecoGrowthShare = _ecoGrowthShare;

 require(amount <= ecoGrowthShare, "ERC20: Insufficient share");

 _ecoGrowthShare = ecoGrowthShare - amount;

 } else if (bucket == Mint.Bucket.Team) {

 uint256 teamShare = _teamShare;

 require(amount <= teamShare, "ERC20: Insufficient share");

 _teamShare = teamShare - amount;

 } else if (bucket == Mint.Bucket.Reserve) {

 uint256 reserveShare = _reserveShare;

 require(amount <= reserveShare, "ERC20: Insufficient share");

 _reserveShare = reserveShare - amount;

 } else {

 revert("ERC20: Invalid mint bucket");

 }

}

Client Response
client response : Acknowledged.

HashKey

12

HKY-4:Compiler Version Optimization

Category Severity Client Response Contributor

Logical Informational Acknowledged ***

Code Reference
code/HSKImplementationV1/contracts/Access.sol#L2

2: pragma solidity ^0.8.0;

code/HSKImplementationV1/contracts/BlackList.sol#L2

2: pragma solidity ^0.8.0;

code/HSKImplementationV1/contracts/BurnPermit.sol#L2

2: pragma solidity ^0.8.0;

code/HSKImplementationV1/contracts/ERC20.sol#L2

2: pragma solidity ^0.8.0;

code/HSKImplementationV1/contracts/ERC20Permit.sol#L2

2: pragma solidity ^0.8.0;

code/HSKImplementationV1/contracts/HSK.sol#L2

2: pragma solidity ^0.8.0;

code/HSKProxy/contracts/Proxy.sol#L2

2: pragma solidity ^0.8.0;

Description
***: Contracts should be deployed using the same compiler version/flags with which they have been tested.
Locking the floating pragma, i.e. by not using ^ in pragma solidity ^0.8.0, ensures that contracts do not
accidentally get deployed using an older compiler version with unfixed bugs.
For reference, see https://swcregistry.io/docs/SWC-103

Recommendation
***: It is recommended to use a recent version of the Solidity compiler and lock the pragma version.

https://swcregistry.io/docs/SWC-103

HashKey

13

pragma solidity 0.8.25;

Client Response
client response : Acknowledged.

HashKey

14

HKY-5:Cheaper Conditional Operators

Category Severity Client Response Contributor

Language Specific Informational Acknowledged ***

Code Reference
code/HSKProxy/contracts/Proxy.sol#L68-L76

68: function _setImplementation(address _impl) internal {
69: require(_impl.code.length > 0, "Proxy: not a contract address");
70:
71: bytes32 slot = IMPLEMENTATION_SLOT;
72: // solhint-disable-next-line no-inline-assembly
73: assembly {
74: sstore(slot, _impl)
75: }
76: }

Description
***: During compilation, x != 0 is cheaper than x > 0 for uint in solidity inside conditional statements:

contract HSKProxy is Proxy, IERC897Proxy {

 // code snippet

 function _setImplementation(address _impl) internal {

>@ require(_impl.code.length > 0, "Proxy: not a contract address");

 bytes32 slot = IMPLEMENTATION_SLOT;

 // solhint-disable-next-line no-inline-assembly

 assembly {

 sstore(slot, _impl)

 }

 }

 // code snippet

}

Recommendation
***: Use x != 0 instead of x > 0 for unsigned integer checks to optimize gas cost.

HashKey

15

contract HSKProxy is Proxy, IERC897Proxy {

 // code snippet

 function _setImplementation(address _impl) internal {

+ require(_impl.code.length != 0, "Proxy: not a contract address");

 bytes32 slot = IMPLEMENTATION_SLOT;

 // solhint-disable-next-line no-inline-assembly

 assembly {

 sstore(slot, _impl)

 }

 }

 // code snippet

}

Client Response
client response : Acknowledged.

HashKey

16

HKY-6:Avoid Re-storing Same Values

Category Severity Client Response Contributor

Code Style Informational Acknowledged ***

Code Reference
code/HSKImplementationV1/contracts/BlackList.sol#L25-L28

25: function setBlackList(address account, bool blacklisted) external accessible(BLACKLIST_ROLE) {
26: require(account != address(0), "Blacklist: zero address");
27: _blacklist[account] = blacklisted;
28: emit SetupBlackList(account, blacklisted);

Description
***: The function setBlackList is found to be allowing re-storing the value in the contract's state variable even
when the old value is equal to the new value.
This practice results in unnecessary gas consumption due to the Gsreset operation (2900 gas), which could be
avoided.
If the old value and the new value are the same, not updating the storage would avoid this cost and could
instead incur a Gcoldsload (2100 gas) or a Gwarmaccess (100 gas), potentially saving gas.

 function setBlackList(address account, bool blacklisted) external accessible(BLACKLIST_ROLE) {

 require(account != address(0), "Blacklist: zero address");

@> _blacklist[account] = blacklisted;

 emit SetupBlackList(account, blacklisted);

 }

Recommendation
***: Add a condition to compare the old value with the new value. Only update the state variable if the values
differ, preventing unnecessary writes and saving gas.

function setBlackList(address account, bool blacklisted) external accessible(BLACKLIST_ROLE) {

 require(account != address(0), "Blacklist: zero address");

+ if (_blacklist[account] != blacklisted) {

 _blacklist[account] = blacklisted;

 emit SetupBlackList(account, blacklisted);

 }

}

Client Response
client response : Acknowledged.

HashKey

17

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Invoices, or the scope of services, and terms
and conditions provided to you (“Customer” or the “Company”) in connection with the Invoice. This report
provided in connection with the services set forth in the Invoices shall be used by the Company only to the
extent permitted under the terms and conditions set forth in the Invoice. This report may not be transmitted,
disclosed, referred to or relied upon by any person for any purposes, nor may copies be delivered to any other
person other than the Company, without Secure3’s prior written consent in each instance.

This report is not an “endorsement” or “disapproval” of any particular project or team. This report is not an
indication of the economics or value of any “product” or “asset” created by any team or project that contracts
Secure3 to perform a security assessment. This report does not provide any warranty or guarantee of free of
bug of codes analyzed, nor do they provide any indication of the technologies, business model or legal
compliancy.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. Instead, it represents an extensive assessing process intending to help our customers increase
the quality of their code and high-level consistency of implementation and business model, while reducing the
risk presented by cryptographic tokens and blockchain technology.

Secure3’s position on the final decisions over blockchain technologies and corresponding associated
transactions is that each company and individual are responsible for their own due diligence and continuous
security.

The assessment services provided by Secure3 is subject to dependencies and under continuing development.
The assessment reports could include false positives, false negatives, and other unpredictable results. The
services may access, and depend upon, multiple layers of third-parties.

